
Pasture Nutrient Management

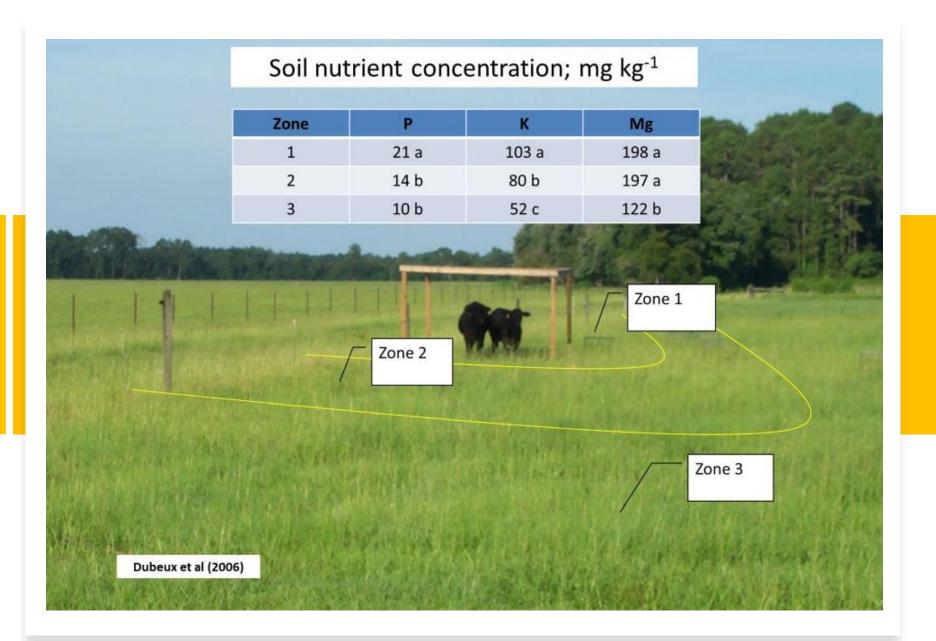
Dr. Heather Darby

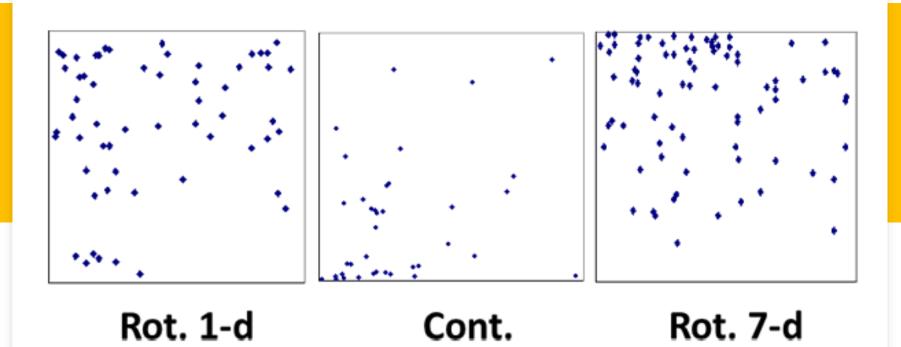
Grazing Management

- Cattle deposit 80 to 90% of nutrients consumed back on the land in manure.
- 10 to 20% incorporated into meat/milk

Nutrients from Manure of Grazing Livestock

Animal	Animal . size (lb)	Total manage production			96	Nutrient content		
		lb/day	cu fi/day	gal/day	WINGET	N Ib/day	P lb/day	K lb/day
Dairy	150	13	0.19	1.5	88	0.06	0.011	0.04
	250	22	0.32	2.4	88	0.11	0.023	0.07
	500	43	0.66	5.0	88	0.22	0.047	0.15
	1000	89	1.32	9.9	88	0.45	0.094	0.29
	1400	120	1.85	13.9	88	0.59	0.131	0.41
Beef								
Cattle	500	30	0.50	3.8	91	0.17	0.051	0.12
	750	45	0.75	5.6	.91	0.26	0.079	0.19
	1000	60	1.0	7.5	91	0.34	0.109	0.24
	1250	63	1.2	9.4	91	0.43	0.12	0.31
Cos	0.58	63	1.05	7.9	91	0.36	0.11	0.26
Swine								
Nursery pig	35	2.9	0.038	0.27	89	810.0	0.0052	0.01
Growing pig	65	5.3	0.070	0.48	89	0.034	0.0099	0.02
Finishing pig	150	12.4	0.16	1.13	89	0.078	0.023	0.045
	200	16.6	0.22	1.5	89	0.104	0.036	0.059
Gestate sow	275	11.3	0.15	1.1	89	0.069	0.023	0.04
Sow and litter	375	15	0.21	1.4	89	0.1	0.031	0.054
Boar	350	34	0.19	1.4	89	0.081	0.023	0.051
Sheep	100	. 4	0.062	0.46	87	0.045	0.0066	0.032
Poultry								
Layers	4 2	0.26	0.0035	0.027	84	0.0034	0.0012	0.0012
Broilers	2	0.17	0.0024	0.018	78	0.0024	0.0006	0.0008
Horse	1000	51	0.75	5.6	85	0.31	0.072	0.25


Moore and Gamroth, 1993


. Nutrient production rate (from table 1)	 Nutrient production rate (from table 1)
N: 0.59 lb/cow/day	N:
P: 0.131 lb/cow/day	P
K: 0.41 lb/cow/day	К
Total nutriest production No. animals × Days × Rate = Total produced N: 100 × 365 × 0.59 = 21,535 P: 100 × 365 × 0.131 = 4,781	 Total nutrient production No. animals × Days × Rate = Total produced N: P:

Simple Manure Calculation -Pasture

- N: 100 x 2 days * 0.59 = 118 lbs
- P: 100 x 2 days *0.131 = 26.2 lbs
- K: 100 x 2 days * 0.41 = 82 lbs

Continuous vs. Rotational Stocking

Adjust Rates Based on What is Being Grown!

- Mostly grass plan on 30 lbs/N per ton of dry matter removed.
- If there is a good mixture of legumes 60 lbs/N total for the season

Try adding more legumes first

- Legumes can provide substantial portion of N need to forage crop
- >30% of composition
- They don't stick around forever, you must manage
- Make sure you've set yourself up for success
 - be ready when conditions are right
 - correct underlying pH/fertility issues

Diversity of stand: Grass/Legume Mixtures

DM
yield tons ac ⁻¹
1.25
1.28
0.607

Can legumes replace N fertilizer?

Treatment	Crude protein	30-hr Digestible NDF lbs ac ⁻¹	Milk yield
Clover	388	993	5925
None	181	491	2834

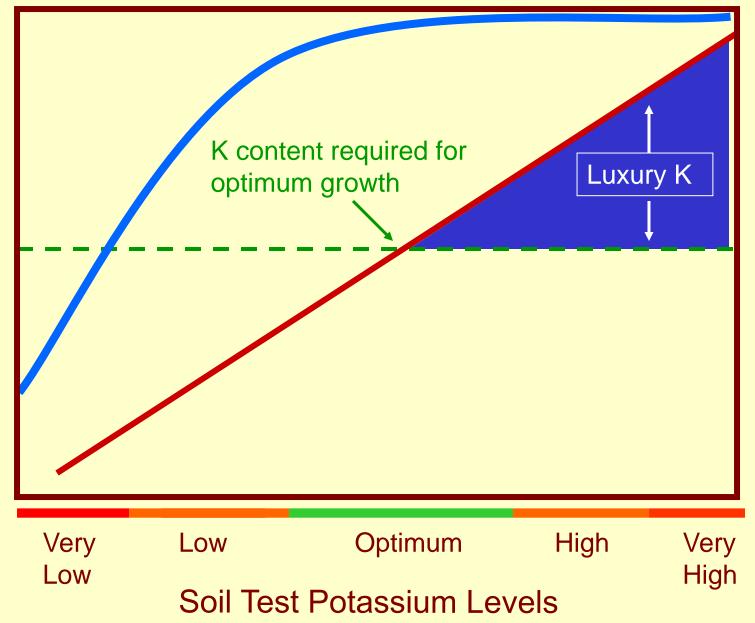
Time N applications When Needed

- Most of the growth in the spring and early summer.
- Similar to hay fields can apply N before first graze.
- Some people have too much growth in the spring so need to manage.
- Limited landbase should consider early N applications.

Check Phosphorus and Potassium

- Starts with soil test
- Phosphorus should be easily managed with manure
- Manage to minimize environmental losses.
- Manage ph to make sure P available.

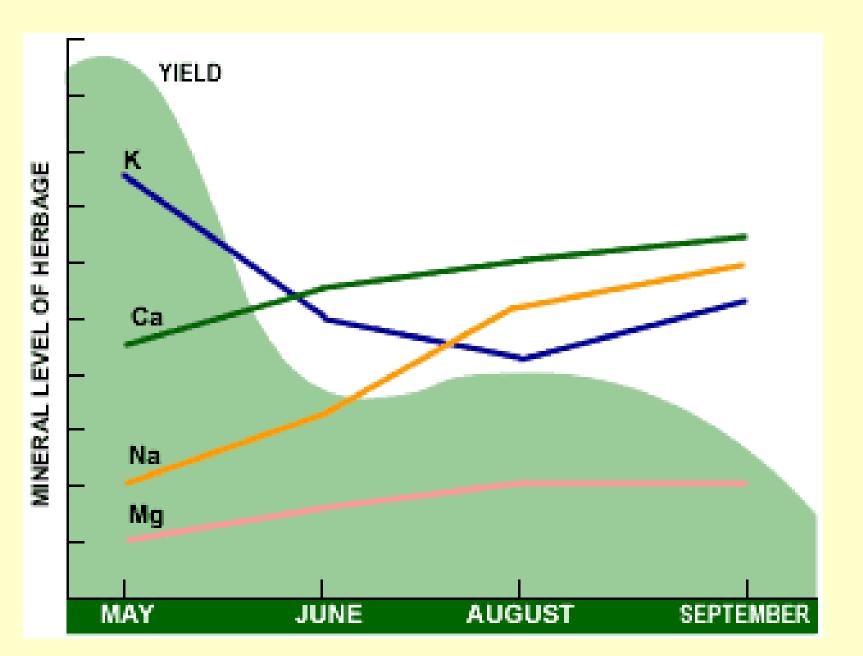
Potassium and Grass Management

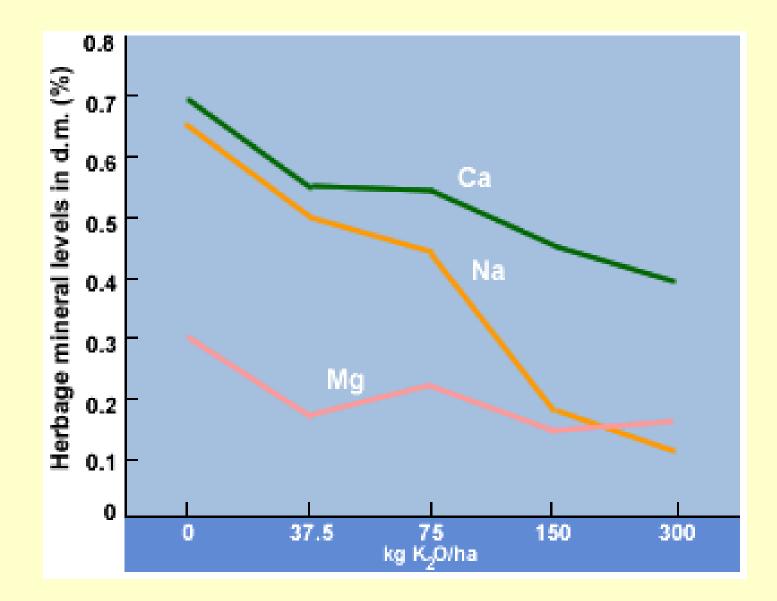

Grasses are capable of removing a lot of potassium but are also very competitive for K when soil test is low.

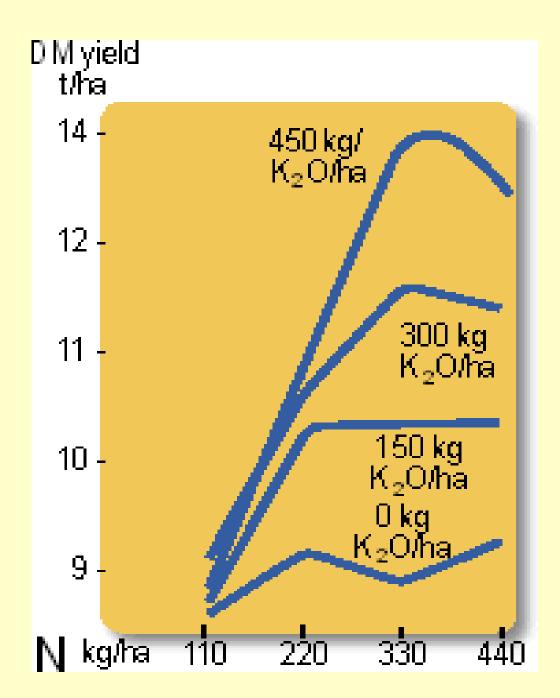
K management is very critical when managing mixtures if legumes are to be maintained.

Luxury Consumption of Potassium

Potassium Content in Plants


Split Applications of Potassium?

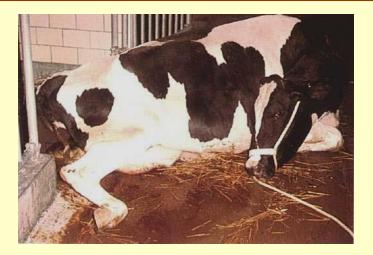

- Split applications helps to reduce luxury consumption.
- Split applications helps to reduce leaching losses in sandy soils
- After first and after late summer harvest


Effects of Liming on K

 Liming increases exchange sites on organic matter; therefore, increasing the potential of exchangeable potassium.


Liming reduces potassium leaching

Animal Metabolic Disorders Involving Potassium



Hypocalcaemia

Hypomagnesaemia

Animal Metabolic Disorders Involving Potassium

Hypocalcaemia Or "Milk Fever"

					-
		phospho		1 1	
		potassiu	ım		
		sulphur			
		calcium			
_		magnes	ium		
	iron				_+-
	manganese				
	boron				
	copper & zinc				

Apply Lime if Needed

- Pay attention to soil pH.
- Impacts availability of other nutrients, microbes, nutrient cycling, etc.
- Lime before pH gets too low.
- Surface application of lime takes a longer period of time to react with soil and neutralize acidity.

