Sjoerd W. Duiker

GRAZING COVER CROPS TO EXTEND THE GRAZING SEASON

Penn State Extension

06.01.2016 10 51

Benefits of Grazing Cover Crops

Cover crop value increases

- Farmer gets immediate economic returns
- Farmer pays more attention cover crops mgmnt
- Cover crops grown bigger

Soil improvement

- Manure and urine feed soil and crops
- Trampling organic matter into soil
- Saliva may have beneficial impact

Reduce costs of livestock feeding

- Cover crops can meet forage needs in critical periods
- Costs of grazing forage < half of fed forage
- You remove

We found that using no-tillage, and Management Intensive Grazing greatly improved ability to graze cover crops

Nutrient Management Benefits of Grazing vs Haying

Data from Wilson Land & Cattle 130 acre crop/pasture land

Nutrient removal in animals

10 cows (@1150 lbs) 2 freezer beef (@ 1000 lbs) 6 steers/bulls (@900 lbs) 10 bred heifers (@900 lbs) 5 calves (@450 lbs) 20 calves (@500 lbs) 60 sheep/goats (@70 lbs) (2.8% N, 0.72% P, 0.2% K, 0.15% S)

Total 44,350 lbs 1242 lbs (N 7%) 731 lbs P₂O₅ (16%) 106 lbs K₂O (0.5% 67 lbs S (4%)

1 T grass hay 45 lbs N

Nutrient removal in grass hay

- 12 lbs P_2O_5
- 50 lbs K₂O

Total 130 A @ 3 T/A = 390 T **17,550 lbs N 4,680 lbs P₂O₅ 19,500 lbs K₂O 1625 lbs S**

Benefits of No-Till for Grazing Covers

- Reduced cost of establishment of cover crops and main crops
- Ability to establish (cover) crops quickly
- Cover crops produce more above- and below ground biomass
- Lower seeding rate needed for small-seeded crops due to more precise seed placement
- Soil erosion control
- Increased surface soil organic matter
- Better surface soil aggregation
- Continuous macropores in subsoil
- Lower susceptibility to compaction
- Greater infiltration
- Lower water evaporation losses
- More earthworms
- More beneficial microbes

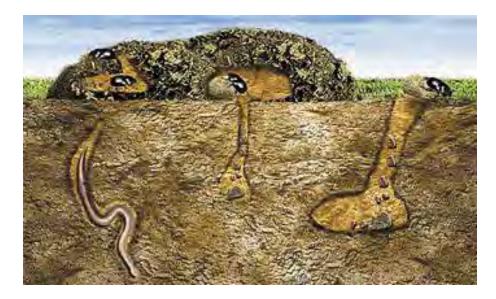
Management-Intensive Grazing (MIG) is an integral component of the puzzle

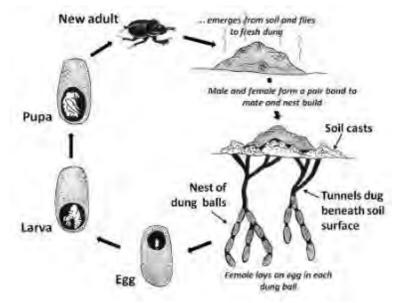
- Short duration grazing events (grazing days or hours)
- High stock density (as high as 1,000,000 lbs liveweight/A)
- Long rest periods (20 -80 days)
- Only part of standing biomass is consumed, a lot is left for soil improvement and regrowth
- Rotational grazing yields are 9-68%
 higher than continuous grazing yields*

* Nelson, C.J. (Ed.) 2012 Conservation outcomes from pastureland and hayland practices: Assessment, recommendations, and knowledge. Allen Press, Lawrence, Kansas

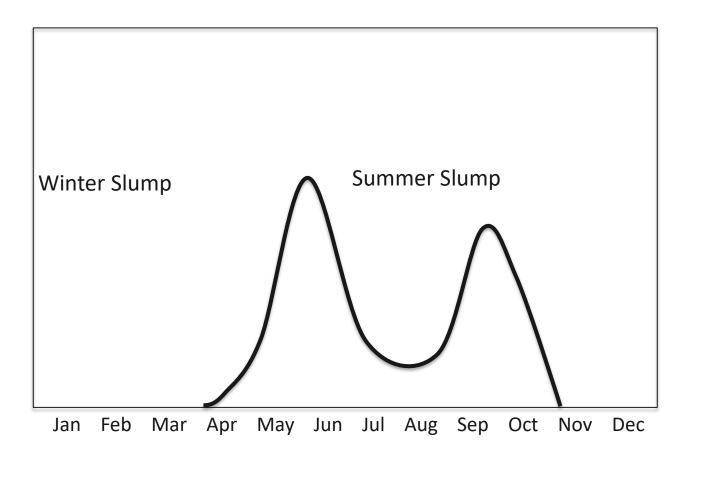
Benefits of Management-Intensive Grazing

- Short grazing period limits compaction
- 2. Long rest period stimulates strong roots
- 3. Long rest period allows soil life to heal compaction
- 4. New pasture regrowth is not grazed prematurely
- 5. Height of grazing (4-8") optimal for regrowth
- 6. About 50% of standing biomass is left to feed soil and act as solar panel for regrowth
- 7. Manure spread more uniformly
- 8. Vegetation is grazed more uniformly

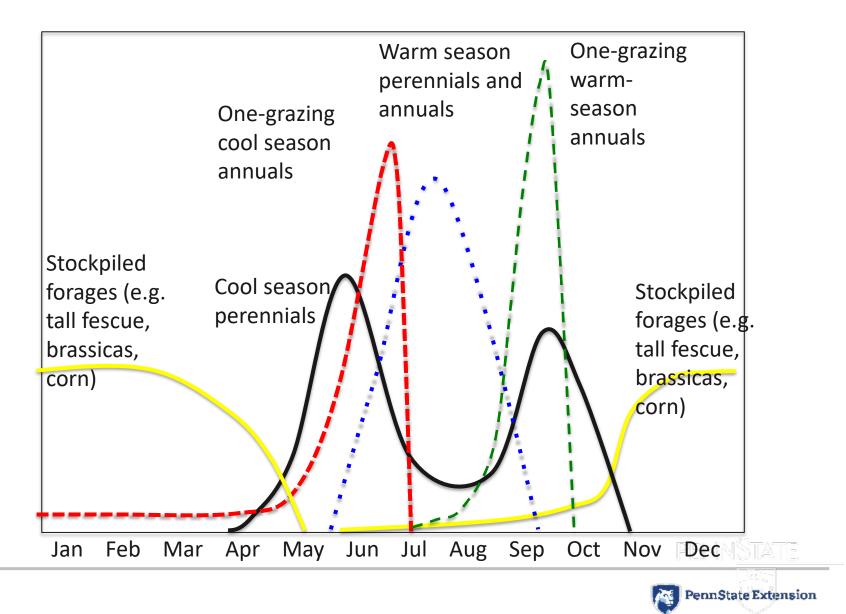

PennState Extension

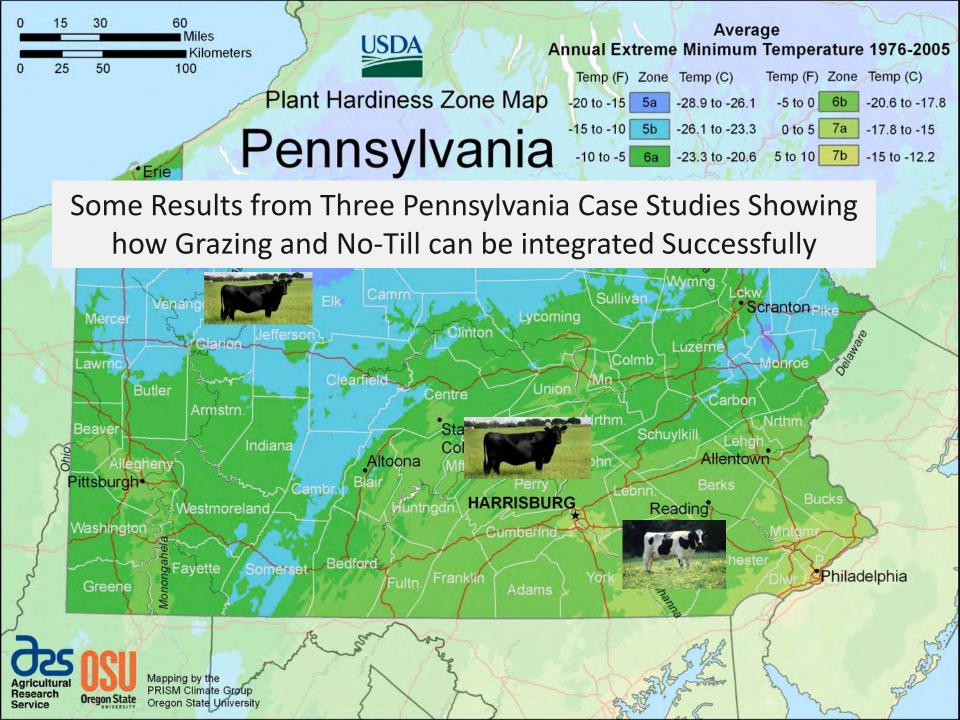

Needs for MIG: A Grazing Plan Including Fencing and Water Supply to all Paddocks

Manure Piles are Centers of Biological Activity so by Improving Their Distribution Soil Health is Improved



Grazing Cover Crops to Complement Cool-Season Perennials




PennState Extension

Maximizing Grazing by Integration with annual and perennial 'cover' crops

Farm 1 - Wilsons

Wilson Land & Cattle Co, Tionesta, Forest County, Pennsylvania, started in 2009 1600 feet above sea level, Average annual temperature 47 F, Average precipitation 43"

- 220 acre farm all owned except for 10 acres
- 130 acres cropland and pasture
- ≻ 100% no-till
- 102 black angus beef cows
- 160 dorset sheep
- 12 goats
- Farm entirely perimeter fenced
- 30 permanent paddocks
- Electric mobile interior fencing
- Started intensive rotational grazing in 2011
- Moves cows typically 4-6 times a day
- 70+ different plant species for grazing

02.06.2017 10:41

FIGNINQUAU E

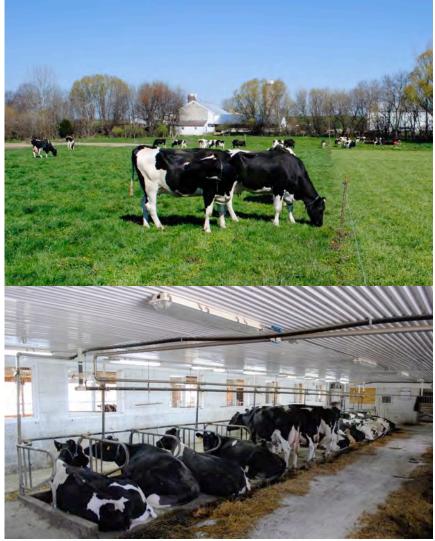
Farm 2 - Brubakers

Double B Farms, McAlisterville, Juniata County, PA

650 feet above sea level, Average annual temperature 51F, Average annual precipitation 40"

> Enterprises:

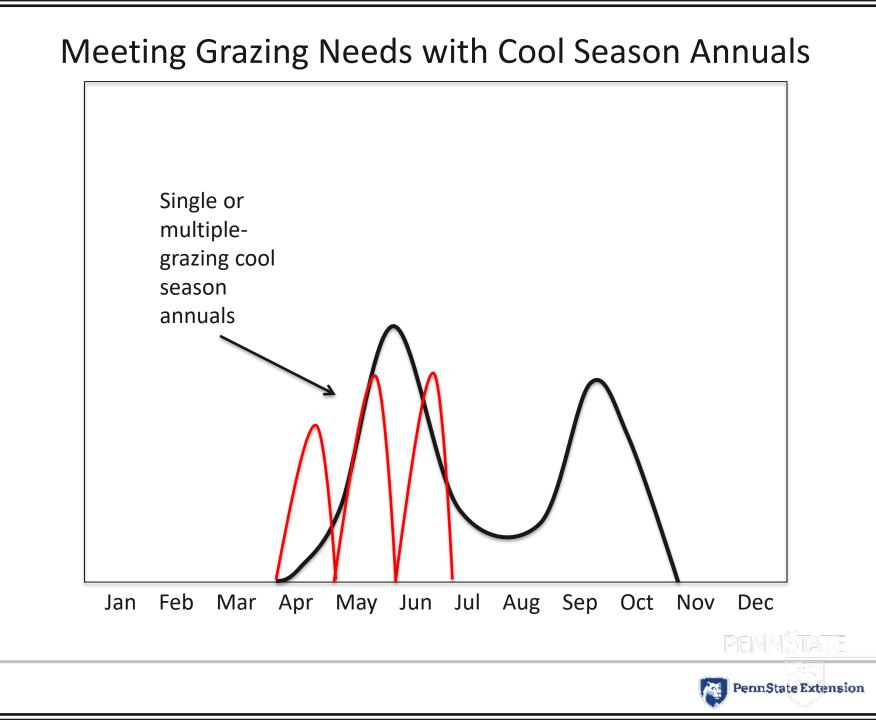
- farm store
- broiler production
- ➢ grain production
- grass-fed limosine
- embryo sales
- 400 acres 180 acres owned
 - 90 acres fenced paddocks (22 total)
 - w. perennial pasture
 - 90 acres perimeter fenced
 - > 35 acres cropland (corn, soyb., spelt, hay)
 - Graze cover crops and crop residues
 - ➢ 55 acres pasture
 - Typically move animals 1 time a day
- 50 breeding cows + calves = approx 90
- 100% no-till since 1996



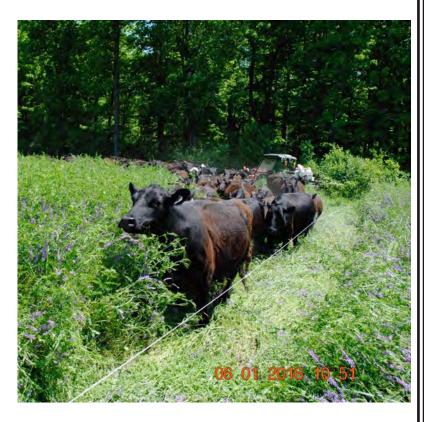
Farm 3 – Weavers

Eli Weaver, Leola, Lancaster County, PA 400 feet above sea level, Average annual temperature 53 F, Average annual precipitation 43"

- > Enterprises:
 - dairy farm
 - Seed business
 - Nutrition business
- 30 milk cows, 12 replacement stock (calves, heifers, dry cows)
- ➢ 45 acres

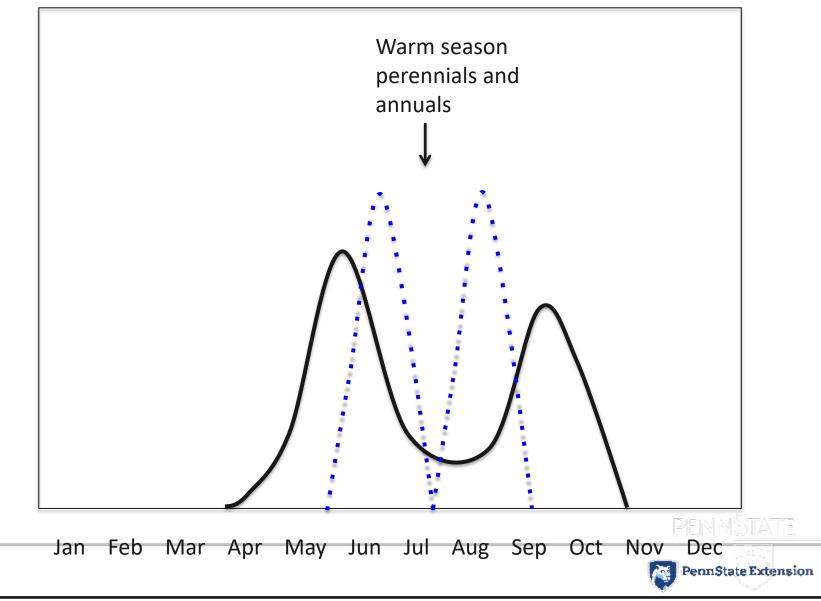

Overview of Farms - Weaver

- One part of farm is fenced for grazing:
 - 7 acres alfalfa/grass, or orchardgrass/perennial ryegrass/meadowfescue/red+white clover)
 - 3 acres cool and warm season annuals
 - > 15 acres can be used for grazing or harvesting
- The other part of the farm is set up for harvesting:
 - 20 acres (two 10 acre blocks that are rotated) very intensive double and triple cropping for silage. E.g. triticale/annual ryegrasssorghumsudan-oat/radish/y.sweet+red+white clover.
- The cows are typically grazed at night only and moved once every day, given 1/3rd of an acre at a time



Grazing No-Till Cool Season Annuals

	Rye/vet ch mix	Rye/vetc h/clover mix	Rye/ryeg rass vetch/clo ver mix	Annual ryegrass / triticale mix
	Lbs DM/A			
Date	7/17/15	6/1/16	4/21, 6/12/17	4/17, 5/4, 5/26/17
Location	Tionesta	Tionesta	Tionesta	Leola
Pre-	3618	6051	Varied	Varied
Post-	2818	2398	2614**	3470*
Grazed	800	3653	2150**	4216*
Grazed (%)	23%	60%	55%	45%



* Sum of three grazings ** Sum of two grazings

Grazed yields ~ 0.4-2.1 T/A

Meeting Grazing Needs with Warm Season Annuals Grazed Several Times

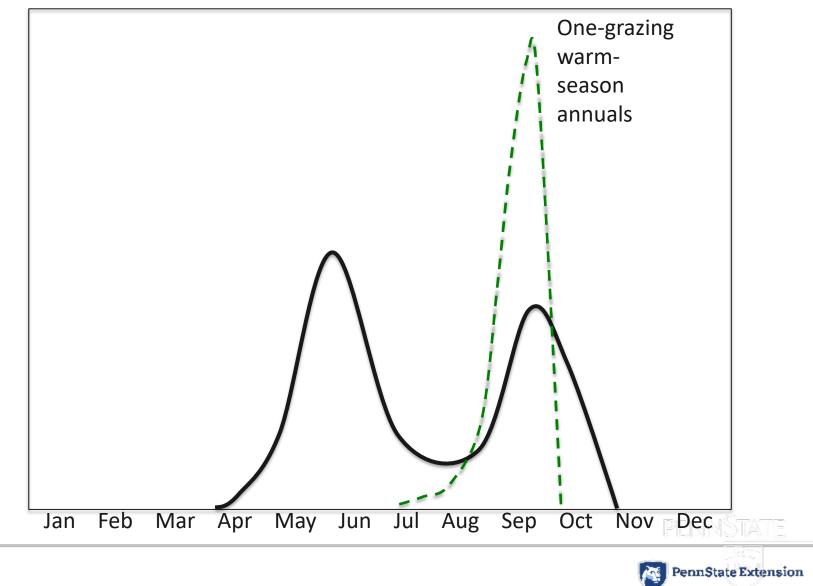
Summer Annuals - Repeat Grazing

	Japanese millet		Pearl millet (w.rape)		Sudangrass		
	Lbs DM/A						
Date	7/17/15	9/5/15	7/23/15	8/8/16	7/15/16	8/4/16	8/31/16
Location	Tionesta		McAlisterville		Leola		
Pre-	6786	4442	3996	3657	3131	3247	3872
Post-	3259	2409	2944	1285	2003	1582	1576
Grazed	3527	2033	1053	2372	1128	1867	2296
Grazed (%)	51%	46%	26%	64%	36%	57%	59%

Grazed yields ~ 2.8 – 3.2 T/A

Pearl Millet pre and post grazing

Japanese Millet and Rape/Pearl millet mixture



Sorghum Sudan Grass Pre and Post Grazing

18. 秋 生

Meeting Grazing Needs with Summer Annuals Grazed Once

Summer Annuals - One Grazing

	Corn/cucurbit s/sunflower mix	Millet mix*	
	Lbs DM/A		
Date	8/26/16	9/13/17	
Location	Tionesta		
Pre-	11,173*	7238	
Post-	4469**	2617	
Grazed	6704**	4621	
Grazed (%)	60%**	64%	
* Cuaurbita	000/		

* Cucurbits = 26%, Corn/Sunflower = 74% ** Not measured

- * 2017 summer annual millet mixture was
- 7 # Japanese millet
- 5 # Sorghum sudangrass
- 3 # Forage sorghum
- 4 # Grain sorghum
- 2 # Annual ryegrass
- .5 # Teff
- 4 # Sunflower
- 1 # Mungbean
- 2 # Cowpea
- 1 # White clover 1 # Red clover
- Grazed Yield ~ 2.3-3.4 T/A

Versatility of mixtures

7 # Japanese millet 5 # Sorghum sudangrass 3 # Forage sorghum 4 # Grain sorghum 2 # Annual ryegrass 5 # Teff 4 # Sunflower 1 # Mungbean 2 # Cowpea 1 # White clover 1 # Red clover

Mixture in better drained part of field

Same Mixture in poorly drained part of field

Annualized yields of different forage rotations

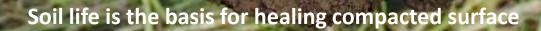
	# Grazings	Grazed yield (T DM/A)	Soil food and regrowth aboveground (T DM/A)
Winter annual mix	1	1.8	1.2 (40%)
Summer annual mix	2-3	2.8-3.2	2.8-3.2 (50%)
Summer annual mix	1	3.4	2.2 (40%)
Annual Yield of Winter/Summer Annual Rotation	2-4	4.8-5.2	3.4-4.2 (40-50%)
Switchgrass/ Big Bluestem/ Indiangrass	2	4.7	1.0-1.1 (32%)

PENNSTATE

Soil Health Evaluations 2016

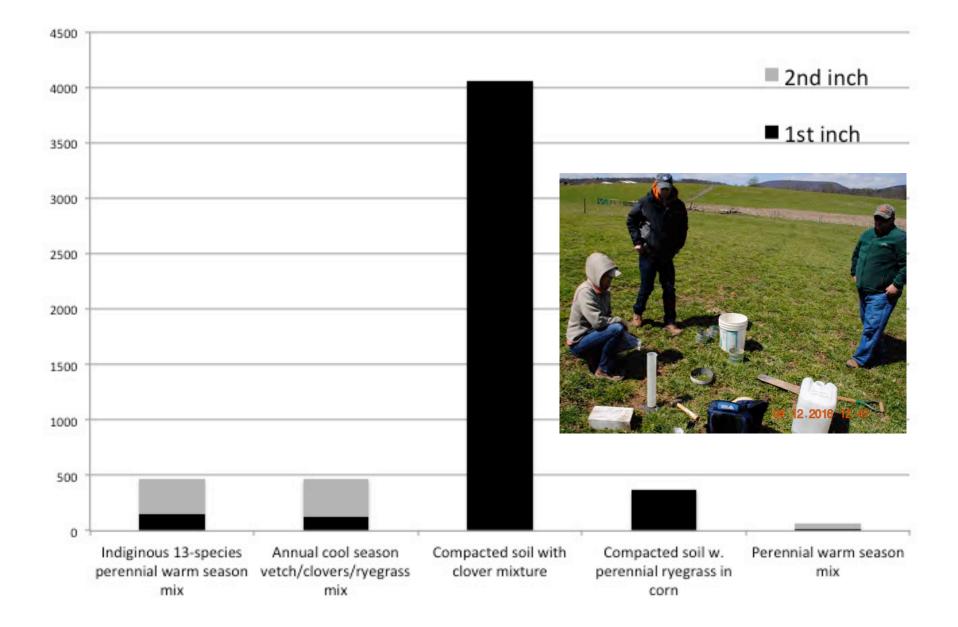
Russ Wilson Soil Health Scores					
Field ID	F5	P3C	РЗА		
DATE	5/4/16	5/4/16	5/4/16		
Cover crop	Heavily compacted soil with grey/red mottling in surface horizon but bright yellow colored material below . Crimson, alsike, sweet yellow and some white clover	Cover crop mix of hairy vetch, alsike clover, red clover, sweet yellow clover, annual ryegrass	Indigenous perennial warm season mix (13 species)		
Surface cover	7	8	8		
Soil Structure	4	5	8		
Organic matter	5	6	6		
Soil erosion	8	8	8.5		
Soil compaction	4	5	8		
Water infiltration	2	7.5	8		
Soil diversity	5	7	8		
Plant and root growth	5	6	8		

PENNŜTATE


Compacted surface

Healed surface

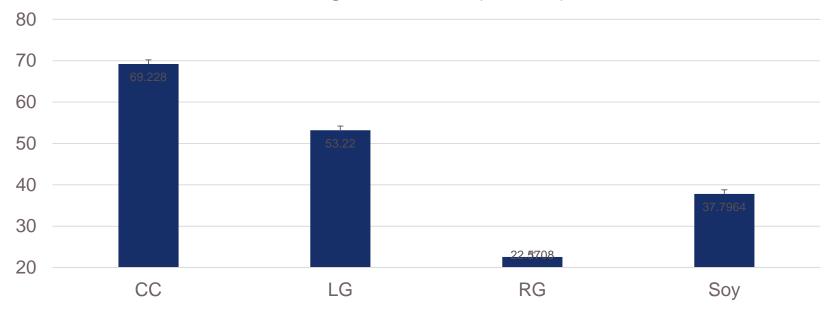
Immediately after grazing After 2-months of rest



Time (sec) to infiltrate 1 or 2 inches of water (single-ring infiltration test, Spring 2016)

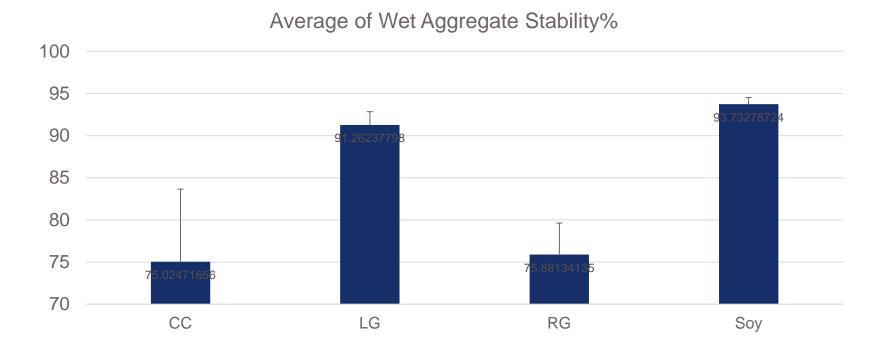
2020-2021 project to study grazing of cover crops in more depth

Two scenarios for grazed cover crops

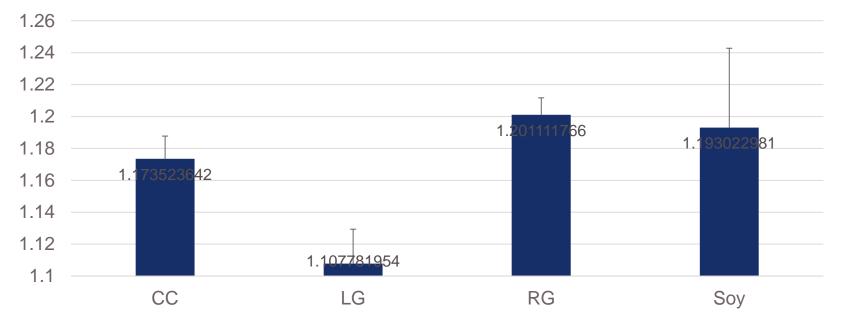

- Small grain double crop soybean vs grazed cover crop mixtures
- 2. Corn silage grazed vs un-grazed cover crop

South-Central PA

Preliminary Results New Cover Crop Grazing Project – After Small-Grain Harvest


Average of Infiltration(cm/hour)

CC: Ungrazed Cover crop LG: Cover crop grazed a month ago RG: Recently grazed cover crop Soy: Soybean


Preliminary Results New Cover Crop Grazing Project – After Small-Grain Harvest

Preliminary Results New Cover Crop Grazing Project – After Small-Grain Harvest

Average of bulk density

Conclusion

- Grazing is a cost effective way of feeding ruminant livestock
- No-till winter and summer annuals can be combined with cool and warm season perennials to meet summer and winter grazing needs
- If combined with intensive rotational grazing soil improves
- High production possible (5 T grazed
 DM/A/yr + 4 T left in field)
- This can help grass-fed beef and milk production increase in the U.S.

Reading resources

- Extending the grazing season with plant diversity <u>https://extension.psu.edu/extending-the-grazing-season-with-plant-diversity</u>
- No-till annuals to beat the summer slump on a dairy farm <u>https://extension.psu.edu/no-till-annuals-to-beat-the-summer-slump-on-a-dairy-farm</u>
- Integrating grazing and no-till systems on a grain farm <u>https://extension.psu.edu/integrating-grazing-in-no-till-systems-on-a-grain-farm</u>
- You-Tube videos on the same topics
- https://extension.psu.edu/beating-the-summer-slump-on-dairy-farms-with-no-till-annuals
- https://www.youtube.com/watch?v=sqdZ8ydVXcM

PennState Extension